
Information and Software Technology 80 (2016) 217–230

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

Re ducing sche duling sequences of message-passing parallel programs

Dunwei Gong

a , b , ∗, Chen Zhang

a , Tian Tian

c , Zheng Li d

a School of Information and Electrical Engineering, China University of Mining and Technology, Xuzhou, Jiangsu, 221116, P.R. China
b School of Electrical Engineering and Information Engineering, LanZhou University of Technology, Lanzhou, Gansu 730 0 0 0, P.R. China
c School of Computer Science and Technology, Shandong Jianzhu University, Jinan, Shandong 250101, P.R. China
d College of Information Science and Technology, Beijing University of Chemical Technology, Beijing 10 0 029, P.R. China

a r t i c l e i n f o

Article history:

Received 24 November 2015

Revised 22 August 2016

Accepted 11 September 2016

Available online 15 September 2016

Keywords:

Software testing

Message-passing parallel program

Reduction of scheduling sequences

Statement coverage

Equivalent class

a b s t r a c t

Context: Message-passing parallel programs are commonly used parallel programs. Various scheduling se-

quences contained in these programs, however, increase the difficulty of testing them. Therefore, reducing

scheduling sequences by using appropriate approaches can greatly improve the efficiency of testing these

programs.

Objective: This paper focuses on the problem of reducing scheduling sequences of message-passing par-

allel programs, and presents a novel approach to reducing scheduling sequences.

Method: In this approach, scheduling sequences that affect the target statement are first determined based

on the relation between a scheduling sequence and the execution of the target statement. Then, these

scheduling sequences are divided into a number of equivalent classes according to the execution of the

target statement. Finally, for each scheduling sequence in the same equivalent class, the values of the two

proposed indexes are calculated, and the scheduling sequence with the minimal comprehensive value is

selected as the one after reduction.

Results: To evaluate the performance of the proposed approach, it is applied to test 12 typical message-

passing parallel programs. The experimental results show that the proposed approach reduces 63%

scheduling sequences on average. And compared with the method without reduction, and the method

with randomly selecting scheduling sequences, the proposed approach shortens 67% and 52% execution

time of a program for covering the target statement on average, respectively.

Conclusion: The proposed approach can greatly reduce scheduling sequences, and shorten execution time

of a program for covering the target statement, hence improving the efficiency of testing the program.

© 2016 Elsevier B.V. All rights reserved.

1

w

w

o

[

m

p

t

p

w

r

n

m

p

h

a

l

i

d

e

a

c

m

g

h

0

. Introduction

Testing is an important way to ensure the correctness of soft-

are, and a lot of time consumption increases the cost of soft-

are testing. Existing statistics have shown that more than 50%

f the total cost in developing software is consumed on testing

1] . Along with broad applications of software testing, there are

ore and more intense demands for the methods of testing high-

erformance software [2] . Therefore, it is of considerable necessity

o shorten time in testing high-performance software by using ap-

ropriate methods.

A parallel program is referred to contain two or more processes

ith parallel execution [3] . Parallel programs are very popular in

eal world applications, since most large scale science and engi-
∗ Corresponding author.

E-mail addresses: 340355960@qq.com , dwgong@vip.163.com (D. Gong).

a

i

ttp://dx.doi.org/10.1016/j.infsof.2016.09.003

950-5849/© 2016 Elsevier B.V. All rights reserved.
eering computation, such as energy exploration, medicine, and

ilitary [4] , is often implemented by parallel programs. Generally,

arallel programs have good portability, powerful functions, and

igh efficiency [5] . In addition, almost all vendors engaging in par-

llel computation provide support for them. Among various paral-

el programs, message-passing parallel programs are widely used

n practice. They are written with FORTRAN, C or other languages.

Test criteria are of considerable importance in software testing,

ue to guiding the generation of test data, and evaluating the ad-

quacy of testing. So far, various test criteria have been proposed,

mong which statement coverage is commonly used for structure

overage. Generally, if a given statement (called the target state-

ent) can be executed with a test datum as the input of a pro-

ram, the test datum is called to cover the target statement.

For serial programs, one execution is enough to judge whether

 test datum covers the target statement or not. However, this

s not true for message-passing parallel programs. Uncertain ex-

http://dx.doi.org/10.1016/j.infsof.2016.09.003
http://www.ScienceDirect.com
http://www.elsevier.com/locate/infsof
http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2016.09.003&domain=pdf
mailto:340355960@qq.com
mailto:dwgong@vip.163.com
http://dx.doi.org/10.1016/j.infsof.2016.09.003

218 D. Gong et al. / Information and Software Technology 80 (2016) 217–230

p

p

o

I

a

t

t

V

t

c

s

t

b

c

a

t

m

t

a

u

e

b

s

a

[

g

a

b

m

fi

d

i

o

t

u

g

t

t

a

T

f

a

p

t

c

[

i

g

e

a

g

u

c

g

i

w

t

o

p

t

i

p

ecutions of message-passing parallel programs exist where differ-

ent coverage results may be caused for the same test datum un-

der different scheduling sequences. Therefore, a test datum can-

not be judged to fail to cover the target statement, if the target

statement is not executed with the test datum under a schedul-

ing sequence. To this end, the coverage results of the target state-

ment with the same test datum under other scheduling sequences

should be further investigated. From this viewpoint, parallel pro-

grams consume much more execution time for statement cover-

age testing than their serial counterparts, indicating considerable

necessity of researching methods of shortening execution time for

statement coverage testing of parallel programs.

This paper focuses on the problem of reducing scheduling se-

quences for statement coverage of message-passing parallel pro-

grams. To this end, a scheduling sequence that affects the tar-

get statement is first defined based on the relation between the

scheduling sequence and the execution of the target statement,

and a method of seeking these scheduling sequences is given. Fol-

lowing that, the equivalent class of scheduling sequences of the

target statement is defined, and a method of forming a number

of equivalent classes is presented. Finally, a number of criteria are

proposed to evaluate each scheduling sequence in an equivalent

class, and the scheduling sequence with the minimal comprehen-

sive value is selected as the one after reduction.

The contributions of this paper are mainly manifested in

the following three aspects: (1) presenting a method of seeking

scheduling sequences that affect the target statement, (2) propos-

ing a method of forming a series of equivalent classes of schedul-

ing sequences for the target statement, and (3) providing a number

of criteria to select an appropriate scheduling sequence.

The remainder of this paper is organized as follows.

Section 2 reviews related work. The proposed approach is stated

in detail in Section 3 which includes determining scheduling

sequences that affect the target statement, forming a series of

equivalent classes of scheduling sequences, and selecting an

appropriate scheduling sequence from each equivalent class. In

Section 4 , the applications of the proposed approach in testing

several typical message-passing parallel programs and the compar-

ative experiments are provided. Finally, Section 5 summarizes the

whole paper, and points out several topics to be further studied.

2. Related work

2.1. Parallel programs testing

Since multiple processes execute simultaneously, parallel pro-

grams can make full use of all the hardware resources provided by

a system, and improve the efficiency of solving a problem. Parallel

programs are, however, subjected to such problems as data race,

resource conflict, deadlock, and uncertain execution, to say a few,

which greatly increases the difficulty in testing. Fortunately, there

has been some valuable research on testing parallel programs.

Christakis et al. built the communication graph of a program by

analyzing the source code of this program, and used the graph to

detect such defects as deadlock and data conflict [6] . Based on the

theory of semantics approximation, Miné analyzed the relations

among processes of an embedded parallel program, and employed

them to detect defects [7] . In the formal verification tool, TASS, de-

veloped by Siegel et al., the correctness of a program is validated

by constructing the abstract model of this program, conducting the

symbolic execution, and enumerating the whole state space [8] .

Given the fact that all the above methods do not actually execute

the program under test, they are called the static methods. Model

checking is also a representative static method. When it is applied

to test parallel programs, the problem of combination explosion,

however, appears due to a large number of interactions between
rocesses. To overcome the above drawbacks, Flanagan et al. pro-

osed a method of dynamically reducing partial orders [9] . Based

n this method, Vakkalanka et al. developed a model checking tool,

SP, and applied it to seek deadlock in a program [10] .

Compared with the static methods, the dynamic methods actu-

lly execute a program under test. Krammer et al. checked whether

he interfaces of a parallel program are correct or not by executing

his program [11] . By using the defect inspection tool developed by

etter et al., such defects as deadlock, unmatched collective opera-

ions, and resource depletion occurring when executing a program

an be found [12] . For the testing tool developed by Park et al., it

eeks defects in a program by inspecting the communications be-

ween processes [13] . In the reachability testing method proposed

y Lei et al., each partial order synchronization sequence is exe-

uted only once, and the ones having been executed are not saved

ny longer [14] . Carver et al. proposed a distributed reachability

esting method to improve the efficiency of testing by executing

ultiple test sequences simultaneously [15] . Given the fact that

raditional unit testing does not take such problems as deadlock

nd data race into account, Shivaprasad et al. extended the existing

nit testing framework to suit for parallel programs [16] . Hwang

t al. obtained a number of synchronous pairs by using reacha-

ility testing, and employed them to generate test data that cover

tatements [17] . For distributed programs, Ferguson et al. utilized

 chaining approach to generate test data for covering statements

18] . In addition, Tian et al. employed a co-evolutionary genetic al-

orithm to generate test data that cover paths [19] .

If the static and the dynamic methods are combined together,

nd employed to test a program, the efficiency of testing will

e further improved. Chen et al. presented a combined testing

ethod. In this approach, some basic information of a program is

rst obtained by using the static analysis, and then utilized to pre-

ict the behaviors of the branches not having been covered dur-

ng the execution of the program [20] . With regard to the method

f unit testing for parallel programs proposed by Schimmel et al.,

he source codes possible to cause data race are first sought by

sing the static analysis, and then the execution traces of the pro-

ram are obtained by employing the dynamic methods. Based on

hem, data race in this program are further inspected [21] . Addi-

ionally, Liao et al. proposed a synchronous communication model

nd its simplified version for message-passing parallel programs.

hese models can detect such defect as deadlock in a program be-

ore and after executing it [22] .

Some scholars have proposed several testing criteria for par-

llel programs based on previous test criteria for serial counter-

arts. For shared memory parallel programs, Yang et al. expanded

he coverage criteria for serial programs to those for their parallel

ounterparts according to the characteristics of parallel programs

23] . Further, they proposed an approach to seeking paths that sat-

sfy all-du-path coverage, one of coverage criteria for parallel pro-

rams [24] . Souza et al. presented such criteria as all-nodes-s cov-

rage, all-nodes-r coverage, all-nodes coverage, all-edges-s cover-

ge, as well as all the edge coverage based on the control flow

raph of a program, and all-defs coverage, all-defs-s coverage, all-c-

ses coverage, all-p-uses coverage, all-s-uses coverage, all-s-c-uses

overage, as well as all-s-p-uses coverage based on the data flow

raph of this program [25] . Alper et al. investigated mutating test-

ng of parallel programs, and presented a novel criterion to judge

hether a mutant is killed or not aiming to the uncertain execu-

ion of parallel programs [26] .

There have been many studies on testing parallel programs. The

bject of most studies, however, is not message-passing parallel

rograms. Therefore, these studies cannot be applied directly to

esting message-passing parallel programs. From this viewpoint, it

s very urgent to research on effective methods for testing parallel

rograms according to the characteristics of these programs.

D. Gong et al. / Information and Software Technology 80 (2016) 217–230 219

2

t

a

N

s

j

g

t

p

t

n

d

n

w

p

v

c

o

p

t

e

m

g

i

t

a

t

i

s

c

m

c

q

i

p

b

t

o

2

c

L

L

o

L

o

p

e

t

m

n

s

t

r

p

t

[

r

m

s

t

a

s

m

t

m

b

p

t

c

e

i

t

p

t

3

q

p

r

b

p

i

b

e

a

e

q

p

t

d

g

d

f

a

s

f

g

b

3

s

f

n

c

r

p

2

r

r

i

M

i

v

t

c

p

m

s

M
.2. Evaluation on the complexity of a program

Evaluating the complexity of a program is very helpful to its

esting. To this end, some indexes are employed when evaluation,

mong which the line of code [27] , the number of predicates [28] ,

PATH complexity [29] , the cyclomatic complexity [30] , and Hal-

tead complexity [31] are commonly used. Here, the line of code,

ust as its name, refers to the number of lines of code in a pro-

ram, and is in general equal to the number of semicolons except

hose in comments and strings in this program. The number of

redicates indicates the number of predicate expressions in condi-

ional statements. For the cyclomatic complexity, it is related to the

umber of paths traversing a given code. The number of indepen-

ent paths can be calculated according to the numbers of edges,

odes, and connected parts in the control flow graph of a program,

hich is the cyclomatic complexity. With respect to Halstead com-

lexity, it only considers the data flow of a program. The attribute

alues of the program, including length, vocabulary, volume, diffi-

ulty, level, cost, time, and bugs, are calculated by the numbers of

perands and operators in the program, and the complexity of the

rogram is further evaluated based on these values.

The indexes above have been applied to a variety of software

esting. According to Halstead complexity and other indexes, Tian

t al. selected the optimal path from a number of paths of a

essage-passing parallel program [32] . Debbarma et al. chose tar-

ets to be tested based on the line of code, the number of pred-

cates, NPATH complexity, and Halstead complexity [33] . In addi-

ion, Papadakis et al. evaluated the difficulty of covering targets

ccording to the number of predicates [34] . It can be seen that

he difficulty of covering targets can be evaluated based on ex-

sting complexity indexes. However, these indexes either are not

uitable for evaluating scheduling sequences, or need a lot of

hanges, since existing methods are mainly for evaluating state-

ents, branches and paths, instead of scheduling sequences fo-

used on in this paper. It is natural that different indexes are re-

uired when evaluating different tar gets. What is more, all the ex-

sting methods have not considered communication cost between

rocesses in message-passing parallel programs. Communication

etween processes, however, is one of very important characteris-

ics of message-passing parallel programs. Therefore, indexes with-

ut communication cost are not comprehensive.

.3. Communication models of parallel programs

At present, various models have been employed to describe

ommunication of parallel programs, among which LogP [35] ,

ogGP [36] , LogGPS [37] , and LoGPC [38] are commonly used, and

ogP is the most basic since the others are the extended versions

f LogP. For LogP, it contains four parameters, L, o, g , and P , where

 refers to the maximal delay for passing a piece of message, and

 is the time consumption of a processor to send or receive a

iece of message. These two parameters reflect the inherent prop-

rties of parallel programs when passing a piece of messages. g is

he shortest time interval required to consecutively send or receive

essages, and reflects the capability of a processor in processing a

etwork protocol. In addition, P represents the number of proces-

ors. For LogGP, it has an additional parameter, G , to indicate the

ime interval between bytes when sending a long message. With

espect to LogGPS, it further considers the synchronization during

assing messages based on LogGP. Finally, LoGPC pays attention to

he network congestion.

In addition, BSP is also a commonly used communication model

39] . This model contains three parameters, P, g , and L , where P

epresents the number of processors, g is the bandwidth of a com-

unication network, and L means the time interval between global

ynchronization. BSP ignores the time consumption of a processor
o send or receive a piece of message, and introduces the mech-

nism of barrier synchronization. Therefore, it can be regarded to

ome extent as a simplified version of LogP. C3 is a kind of parallel

odels with a coarse granularity, and contains such parameters as

he number of processors, the number of communication, the com-

unication delay, the size of data for sending, and the network

andwidth. These parameters can reflect the computational com-

lexity and communication congestion of parallel programs [40] ,

o say a few.

However, the models above are hard to be analyzed due to their

omplexity. In order to reduce the difficulty of analysis, Thakur

t al. proposed a simplified model for function communication

n message-passing parallel programs, and divided communication

ime into the following two parts: one is related to data to be

assed, and the other is not. They further estimated cost for func-

ion communication based on this model [41] .

. The proposed approach

This section presents a method of reducing scheduling se-

uences. Based on the existing test data, a target statement is ex-

ected to be covered according to the scheduling sequences after

eduction, so that the cost of executing the program under test can

e reduced, and the efficiency of testing the program can be im-

roved. The idea of the proposed approach is as follows. Schedul-

ng sequences that affect the target statement are first determined

ased on the relation between a scheduling sequence and the ex-

cution of the target statement. Then, these scheduling sequences

re divided into a number of equivalent classes according to the

xecution of the target statement. Finally, for each scheduling se-

uence in the same equivalent class, the values of the two pro-

osed indexes are calculated, and the scheduling sequence with

he minimal comprehensive value is selected as the one after re-

uction. When the target statement is required to cover, the pro-

ram is executed according to the scheduling sequences after re-

uction.

It can be seen that determining scheduling sequences that af-

ect the target statement, forming a number of equivalent classes,

nd selecting a scheduling sequence from each equivalent class are

tep-by-step related, and three key techniques of this paper. In the

ollowing three sections, details of the techniques above will be

iven, and examples of intuitively demonstrating these details will

e provided.

.1. Determining scheduling sequences that affect the target

tatement

Unlike serial programs, message-passing parallel programs are

eatured by various communication statements, such as blocking,

on-blocking, and collective communication statements. The exe-

ution of a program is uncertain due to different settings of pa-

ameters in these communication statements. Taking the message-

assing parallel program shown in Fig. 1 as an example, statement

 in Fig. 1 (a) is a sending statement, and the values of its pa-

ameters, dest, tag , and comm , are 1, 1, and MPI_COMM_WORLD,

espectively. These mean a message with the value of tag be-

ng 1 is sent to process 1 in the communication domain of

PI_COMM_WORLD. Similarly, statement 2 in Fig. 1 (b) is a receiv-

ng statement, whose parameters, source, tag , and comm have the

alues of 0, 1, and MPI_COMM_WORLD, respectively. These mean

hat a message with the value of tag being 1 is received from pro-

ess 0 in the communication domain of MPI_COMM_WORLD. Since

arameters, dest (source), tag , and comm , of the two statements are

atched, the latter can receive the message from the former. For

tatement 6 in Fig. 1 (a), since the value of its parameter, source , is

PI_ANY_SOURCE, this statement can receive messages from other

220 D. Gong et al. / Information and Software Technology 80 (2016) 217–230

Fig. 1. The example program.

D. Gong et al. / Information and Software Technology 80 (2016) 217–230 221

Table 1

The scheduling sequences of the program in Fig. 1 .

Scheduling sequences Message match

P 0 6 P 0 7 P 0 8 P 0 9

ss 1 P 1 4 P 2 4 P 3 4 P 4 4

ss 2 P 1 4 P 2 4 P 4 4 P 3 4

ss 3 P 1 4 P 3 4 P 2 4 P 4 4

ss 4 P 1 4 P 3 4 P 4 4 P 2 4

ss 5 P 1 4 P 4 4 P 2 4 P 3 4

ss 6 P 1 4 P 4 4 P 3 4 P 2 4

ss 7 P 2 4 P 1 4 P 3 4 P 4 4

ss 8 P 2 4 P 1 4 P 4 4 P 3 4

ss 9 P 2 4 P 3 4 P 1 4 P 4 4

ss 10 P 2 4 P 3 4 P 4 4 P 1 4

ss 11 P 2 4 P 4 4 P 1 4 P 3 4

ss 12 P 2 4 P 4 4 P 3 4 P 1 4

ss 13 P 3 4 P 1 4 P 2 4 P 4 4

ss 14 P 3 4 P 1 4 P 4 4 P 2 4

ss 15 P 3 4 P 2 4 P 1 4 P 4 4

ss 16 P 3 4 P 2 4 P 4 4 P 1 4

ss 17 P 3 4 P 4 4 P 1 4 P 2 4

ss 18 P 3 4 P 4 4 P 2 4 P 1 4

ss 19 P 4 4 P 1 4 P 2 4 P 3 4

ss 20 P 4 4 P 1 4 P 3 4 P 2 4

ss 21 P 4 4 P 2 4 P 1 4 P 3 4

ss 22 P 4 4 P 2 4 P 3 4 P 1 4

ss 23 P 4 4 P 3 4 P 1 4 P 2 4

ss 24 P 4 4 P 3 4 P 2 4 P 1 4

p

v

t

t

t

u

s

i

t

m

d

c

p

D

1

a

s

a

a

f

i

s

i

i

t

s

i

f

a

M

f

c

t

t

m

t

s

u

m

s

m

i

u

t

p

a

b

P

t

P

t

F

s

c

a

c

a

r

u

S

b

e

s

c

c

s

s

t

e

o

t

n

s

x

i

P

v

∼

d

t

e

t

p

I

s

i

s

s

f

f

t

t

t

e
rocesses besides statement 4 in Fig. 1 (b). For the same reason, the

alue of tag of statement 6 in Fig. 1 (a), MPI_ANY_TAG, makes that

he statement can receive messages with any value of tag .

Given a communication statement, if the values of its parame-

ers make its matched sending or receiving statements uncertain,

his statement is called an uncertain communication statement. An

ncertain communication statement may be a sending or receiving

tatement. It is the uncertain communication statements contained

n a message-passing parallel program that make the execution of

his program uncertain.

The uncertain execution of a message-passing parallel program

akes different outputs of the program with the same input under

ifferent orders of executing processes. An order of executing pro-

esses is called a scheduling sequence. It is clear that a message-

assing parallel program has more than one scheduling sequence.

enote a message-passing parallel program as P . It contains t (t >

) processes, where its i th (i = 0 , 1 , . . . , n − 1) process is denoted

s P i , and contains N

i uncertain communication statements. Con-

ider the j th uncertain communication statement in process P i ,

nd denote the number of matched communication statements

s N

i
j
. Then, at most N

i
1

· N

i
2

· · · · · N

i
N i

scheduling sequences can be

ormed based on all these uncertainty communication statements

n P i . If one takes all the t processes into account, more scheduling

equences will be formed, suggesting that the number of schedul-

ng sequences will be greatly increased as the number of processes

n a parallel program increases.

Now, the relation between scheduling sequences and uncer-

ain communication statements is explained through the program

hown in Fig. 1 . For convenient description, the k th statement

n process P i is denoted as P i
k
. From Fig. 1 , process P 0 contains

our uncertain communication statements, P 0
6
, P 0

7
, P 0

8
, and P 0

9
,

nd the values of their source and tag are MPI_ANY_SOURCE and

PI_ANY_TAG, respectively. So each of them can receive messages

rom P 1 4 , P 2 4 , P 3
4
, and P 4 4 . For each execution, it can, however, re-

eive messages from only one of these sending statements, and

he sending statement is also uncertain. Through enumeration,

his program has 24 matches of uncertain communication state-

ents, i.e., the number of scheduling sequences. Table 1 lists all
he scheduling sequences of this program, where column 1 is the

erial number of a scheduling sequence, row 1 represents four

ncertain receiving statements in process P 0 , and the rest rows

ean the matches of sending statements under the corresponding

cheduling sequences.

For a target statement of a program, the execution of the state-

ent is related not only to the input of the program, but also to

ts scheduling sequences. Therefore, the statement can be executed

nder one scheduling sequence, but cannot under the other with

he same input. This shows that the scheduling sequences of the

rogram affect the execution of the target statement.

For the program shown in Fig. 1 , it has only one input variable,

 , and its execution process is now analyzed with the value of a

eing A . With this input, the values of messages sent by P 1 4 , P 2 4 ,

3
4
, and P 4 4 are A + 4 , A + 9 , A + 6 , and 0, respectively. To execute

he target statement, P 0
11

, the value of the message, x , received by

0
6

is required to be greater than or equal to 4, so that the value of

he predicate expression of the conditional statement, P 0
10

, is true.

rom Table 1 , P 0
6

receives messages sent by P 1
4

under scheduling

equences ss 1 ∼ ss 6 , and x = A + 4 . This statement, however, re-

eives messages from P 2 4 under scheduling sequences ss 7 ∼ ss 12 ,

nd the value of x becomes A + 9 . For the same statement, it re-

eives messages sent by P 3
4

under scheduling sequences ss 13 ∼ ss 18 ,

nd x = A + 6 . Under scheduling sequences ss 19 ∼ ss 24 , it, however,

eceives messages from P 4
4
, causing the value of x to be 0.

If the value of A is equal to −1, the value of x will be 8 and 5

nder scheduling sequences ss 7 ∼ ss 12 and ss 13 ∼ ss 18 , respectively.

ince the value of x is greater than 4, the target statement, P 0
11

, can

e executed under these scheduling sequences. However, x will be

qual to 3 and 0 under scheduling sequences ss 1 ∼ ss 6 and ss 19 ∼
s 24 , respectively. Due to the value of x being smaller than 4, P 0

11
annot be executed under these scheduling sequences.

If at least one input of a message-passing parallel program

an cover a target statement under a scheduling sequence, this

cheduling sequence is said to affect the execution of the target

tatement. It is clear that a message-passing parallel program of-

en contains multiple scheduling sequences, not all of them, how-

ver, affect the execution of a target statement of this program. In

rder to cover the target statement, seeking scheduling sequences

hat affect the execution of the target statement is of considerable

ecessity.

Consider the program shown in Fig. 1 again, and the target

tatement is also P 0
11

. If one expects to execute P 0
11

, the value of

 received by P 0
6

is required to be greater than or equal to 4. It

s clear that as long as the value of the input, a , is big enough,

0
11

will be executed under scheduling sequences ss 1 ∼ ss 18 . The

alue of x , however, is always 0 under scheduling sequences ss 19

ss 24 , so that the value of the predicate expression of the con-

itional statement, P 0
10

, is false, and P 0
11

cannot be executed. Thus,

he scheduling sequences that affect P 0
11

are ss 1 ∼ ss 18 .

For a simple program, such as the one shown in Fig. 1 , it is

asy to seek scheduling sequences that affect the target statement

hrough static analysis. For a complex program, however, appro-

riate methods are required to seek these scheduling sequences.

n this paper, an approach to combining dynamic execution with

tatic analysis is proposed to seek them.

For an element in the input domain of a program, the program

s executed with the element as its input under each scheduling

equence. If there is a scheduling sequence under which a target

tatement can be executed, it is the scheduling sequence that af-

ects the target statement. After this scheduling sequence has been

ound, the next one is considered, and judged whether it affects

he target statement or not. The process above is repeated, un-

il all the scheduling sequences have been investigated. Following

hat, execute the program with another element as its input under

ach scheduling sequence that has not been judged to be the one

222 D. Gong et al. / Information and Software Technology 80 (2016) 217–230

w

e

,

t

P

q

b

t

m

t

s

m

c

I

o

t

c

t

s

o

s

m

i

t

s

e

T

p

t

g

d

s

f

m

t

i

f

c

a

i

q

t

o

P

o

i

t

c

q

3

q

o

p

s
that affects the target statement, and seek all the other scheduling

sequences that affect the target statement. The process above is re-

peated, until either all the scheduling sequences have been those

that affect the target statement, or the program has been executed

with all the elements as its input.

The method above is a type of dynamic methods, since it seeks

the desired scheduling sequences by executing the program under

test. A part of scheduling sequences that affect the target state-

ment can be found by using the dynamic method, the effectiveness

of this method, however, is closely related to the input domain of a

program. If an inappropriate domain is selected, finding all the de-

sired scheduling sequences of this program will be very hard. On

this circumstance, statically analyzing the relation between con-

trol statements related to the target statement and scheduling se-

quences is demanded, so as to determine whether a scheduling se-

quence affects the execution of the target statement or not. This

method is called a static method.

On one hand, the dynamic method can reduce the number of

scheduling sequences that have not been judged to be the ones

that affect the target statement, so as to alleviate the burden

caused by static analysis to some extent. On the other hand, seek-

ing the desired scheduling sequences by using the static method

can compensate the defect that the dynamic method cannot find

the desired scheduling sequences resulted from improper input do-

mains. However, the effectiveness of the static method is closely

related to the complexity of a program and a testers experience.

If the program under test is very complex, or the tester is lack of

experience, determining the desired scheduling sequences will be

very hard, and will result in the following two problems. One is

that not all the scheduling sequences that affect the target state-

ment can be sought, the other is that the sought scheduling se-

quences do not affect the target statement.

3.2. Forming equivalent classes of scheduling sequences

As can be seen from Section 3.1 , for the same input of a pro-

gram, the target statement of this program can be executed under

some scheduling sequences, whereas it cannot under others.

For the program shown in Fig. 1 , the scheduling sequences that

affect the target statement, P 0
11

, are ss 1 ∼ ss 18 . If the value of the

input variable, a , is A , the value of x in the predicate expression

of P 0
10

is A + 4 under scheduling sequences ss 1 ∼ ss 6 . This means

that the value of the predicate expression of P 0
10

is same for any in-

put under these scheduling sequences. Correspondingly, P 0
11

has the

same execution under these scheduling sequences, either be exe-

cuted or not. The same is true for the other scheduling sequences,

such as ss 7 ∼ ss 12 and ss 13 ∼ ss 18 .

Therefore, scheduling sequences that affect the target statement

of a program can be divided into a number of classes according to

whether the target statement being executed or not for the same

input, and the ones in the same class are equivalent. The method

of forming these equivalent classes is given in details as follows.

The set consisting of all the scheduling sequences of the paral-

lel program, P , is denoted as S , and the j th statement, P i
j
, in pro-

cess P i is selected as the target statement. According to whether a

scheduling sequence affecting P i
j

or not, S is divided into the fol-

lowing two classes: one contains scheduling sequences that affect

P i
j
, denoted as S i

j1
, the other includes scheduling sequences that do

not affect P i
j
, denoted as S i

j2
. So S = S i

j1
∪ S i

j2
. According to whether

P i
j

being executed or not with the same input, S i
j1

is further divided

into the following m classes:

S i
j1

= S i 1
j1

∪ S i 2
j1

· · · ∪ S im

j1

S ih
j1

∩ S il
j1

= ∅ , ∀ h, l ∈ { 1 , 2 , . . . , m } , h 	 = l

t
here m is the number of equivalent classes, and S ik
j1

is the k -th

quivalent class of scheduling sequence.

For the program shown in Fig. 1 , scheduling sequences ss 1 ∼ ss 6
 ss 7 ∼ ss 12 and ss 13 ∼ ss 18 form different equivalent classes of the

arget statement, P 0
11

. Therefore, scheduling sequences that affect

0
11

can be divided into three equivalent classes.

The approach to seeking equivalent classes of scheduling se-

uences will be given as follows. When the target statement is in a

ranch or loop structure, there must be a statement on which the

arget statement is directly control dependent [42] . To explain the

eaning of direct control dependence, assume that s 1 and s 2 are

wo statements in a program. If the execution of s 2 depends on s 1 ,

 2 is called control dependent on s 1 . Further, if there is no state-

ent, s 3 , such that it is located in the path from s 1 to s 2 , and s 2 is

ontrol dependent on s 3 , s 2 is said to be directly dependent on s 1 .

t is clear that s 1 must be a conditional statement. The statement

n which the target one is directly control dependent is called a

arget dependence statement .

A scheduling sequence of a message-passing parallel program

an be reflected by its uncertain communication statements and

heir matched ones. Therefore, scheduling sequences with the

ame uncertain communication statements and their matched ones

f a target dependence statement are equivalent.

In this paper, the relations between uncertain communication

tatements and their matched ones of a target dependence state-

ent are reflected by the program dependence graph (PDG). Intu-

tively, PDG is a directed graph, denoted as G = (N, E) , where N is

he set of vertices, with each vertex corresponding to one or more

tatements of the program; E is the set of directed edges, with

ach edge reflecting the dependence relation between statements.

he relation can be either control, or data, or communication de-

endence [43] . Since different kinds of dependence relations are

reated in the same way in this paper, they are not further distin-

uished. The PDG of a program can be obtained based on these

ependence relations between statements.

For the program shown in Fig. 1 , the PDG of the program under

cheduling sequence ss 1 is shown in Fig. 2 .

According to the PDG under a scheduling sequence, starting

rom the vertex corresponding to the target dependence state-

ent, seeking vertices corresponding to all uncertain communica-

ion statements and their matched ones along the directed edges

n the opposite direction, so as to obtain a vertex sequence. For dif-

erent scheduling sequences, if the vertex sequences are same, the

orresponding scheduling sequences are equivalent. Through the

pproach above, one can obtain a number of equivalent schedul-

ng sequences.

For the program shown in Fig. 1 , the PDG under scheduling se-

uence ss 2 is demonstrated in Fig. 3 . Figs. 2 and 3 show that under

hese two scheduling sequences, the target dependence statement

f P 0
11

is P 0
10

, and the vertex sequences that affect P 0
10

are both { P 1
4
,

0
6

} . So the two scheduling sequences are equivalent.

If a target statement is in the sequence structure, the execution

f this statement is in general not controlled by other statements,

ndicating that it can be executed under any scheduling sequence

hat affects it. Therefore, this statement has only one equivalent

lass of scheduling sequences which contains all the scheduling se-

uences that affect it.

.3. Selecting a scheduling sequence from each equivalent class

The target statement can be executed under any scheduling se-

uence in an equivalent class. Therefore, it is enough to select only

ne scheduling sequence from each equivalent class and test the

rogram under this scheduling sequence. For equivalent scheduling

equences, the target statements executed under them are same,

he execution processes of the program, however, are different.

D. Gong et al. / Information and Software Technology 80 (2016) 217–230 223

Fig. 2. The PDG of the program above under scheduling sequence ss 1 .

Fig. 3. The PDG of the program above under scheduling sequence ss 2 .

O

f

o

i

m

c

t

p

m

t

s

p

i

c

s

o

t

e

p

o

i

i

d

s

p

h

n
n this circumstance, selecting an appropriate scheduling sequence

rom an equivalent class is very beneficial to increase the efficiency

f testing. To this end, this subsection will give a method of select-

ng a scheduling sequence from an equivalent class.

When selecting a scheduling sequence, execution cost of a

essage-passing parallel program is investigated. Execution cost

an be in general divided into the following two parts: computa-

ion and communication cost. Among them, computation cost de-

ends on the line of code and the computation complexity; com-

unication cost is closely related to the frequency of communica-

ion between processes and the amount of data passed.

In order to select an appropriate scheduling sequence, an index

ystem is built in this subsection to evaluate execution cost of the

rogram under different scheduling sequences. The index system

ncludes the following two indexes: Halstead measure and average

ommunication cost.
Index 1: Halstead measure of a scheduling sequence

In a message-passing parallel program, statements that have the

equential execution relation may exist either in the same process

r in different ones. From the starting statement of the program

o the target one, a series of statements that have the sequential

xecution relation form a statement sequence. Since a message-

assing parallel program contains more than one process, a path

f the program often contains a number of statement sequences. It

s clear that different statement sequences have different complex-

ties, and the statement sequence with the largest complexity often

etermines cost of executing the path. Therefore, this statement

equence is called a key statement sequence. To reflect the com-

lexity of a statement sequence, Halstead complexity is employed

ere. It evaluates the complexity of a statement sequence by the

umbers of operators and operands, where an operand refers to a

224 D. Gong et al. / Information and Software Technology 80 (2016) 217–230

m

s

t

t

i

s

a

s

B

t

w

o

c

s

t

o

o

o

e

i

t

t

w

e

e

3

c

a

i

m

t

o

[

a

B

e

p

t

e

d

t

a

i

e

p

q

t

s

b

4

s

p

e

l

e

r

variable or constant contained in the statement sequence, and an

operator mainly means an arithmetic or Boolean operator.

Denote a statement sequence as Sq , its numbers of operators

and operands as N 1 (Sq) and N 2 (Sq), respectively. According to the

method in [31] , the Halstead length of Sq , denoted as L (Sq), can be

represented as:

L (Sq) = N 1 (Sq) + N 2 (Sq)

For each statement sequence in a path, its Halstead length is

calculated. Then, the statement sequence with the largest Halstead

length is key. A scheduling sequence may involve more than one

path. On this circumstance, the key statement sequence of each

path is sought, and the largest Halstead length of these key state-

ment sequences is regarded as Halstead measure of the scheduling

sequence.

The program shown in Fig. 1 contains several statement se-

quences with the largest Halstead length for the target state-

ment, P 0
11

, under scheduling sequence ss 1 , among which one is

P 0
1

P 0
2

P 1
2

P 1
3

P 1
4

P 0
6

P 0
7

P 0
8

P 0
9

P 0
10

, and its Halstead length is 6. So Halstead

measure of scheduling sequence ss 1 is 6.

Index 2: Average communication cost

For a message-passing parallel program, the time consump-

tion for passing messages between processes is much more than

that for executing statements in a process [44] . A scheduling se-

quence has an influence on passing of messages between pro-

cesses.Therefore, the goodness of a scheduling sequence can be re-

flected by its communication cost between processes.

The communication mode of message-passing parallel programs

can be divided into the following two categories: point-to-point

communication and collective communication. When passing a

message with n bytes between processes through point-to-point

communication, if the transmission delay is σ , and it takes θ time

units to pass each byte, σ + nθ time units will be consumed to ex-

ecute the communication operation. Given the fact that collective

communication is implemented based on point-to-point communi-

cation, Thakur et al. estimated communication cost of different col-

lective communication modes through a number of models based

on the time consumption of point-to-point communication.

The models built by Thakur et al. describe the time consump-

tion for executing a communication operation. In message passing

parallel programs, the implementation of a communication opera-

tion requires the cooperation of communication functions in two

or more processes. To avoid repeatedly calculating communication

cost, communication cost of each function is stipulated as follows.

If a sending function and its matched receiving function cooper-

ate to implement a point-to-point communication operation, and

the operation consumes σ + nθ time units, communication cost of

the sending or receiving function will be equal to (σ + nθ) / 2 time

units. For the case that communication functions in multiple pro-

cesses cooperate to implement a collective communication opera-

tion, communication cost of each function is the ratio of collective

communication cost to the number of processes.

Different inputs of a program may execute different communi-

cation functions under the same scheduling sequence. Correspond-

ingly, communication cost of this scheduling sequence is not al-

ways same. Given this fact, communication cost of a scheduling

sequence is reflected by average communication cost for executing

the target statement under the scheduling sequence.

In the following, average communication cost of a function is

calculated according to the type of a structure that contains the

function.

If a communication function is in the sequential structure of

a process, it must be executed and produces communication cost

once the process is executed. If the function is in the branch struc-

ture of a process, executing the process cannot guarantee the exe-

cution of the function. Given the fact that the execution of a com-
unication function is random, probability can be employed to de-

cribe the possibility of executing the function. In fact, the execu-

ion of a communication function is related closely to the value of

he predicate expression of the conditional statement that controls

ts execution. The probability of the value of the predicate expres-

ion being true is denoted as p . When the range of the input of

 program and that of making the value of the predicate expres-

ion true are known, a method of calculating p was given in [45] .

ased on the value of p , if communication cost of a function is ε
ime units, average communication cost of executing the function

ill be p · ε time units. If the function is in the loop structure

f a process, and the number of loops is assumed as n , average

ommunication cost of executing the function will be p · n · ε.

Assume that N 1 , N 2 and N 3 communication functions under a

cheduling sequence are in the sequential structure, branch struc-

ure, and loop structure, respectively, average communication cost

f the i th function in the sequential structure is αi time units, that

f the j th function in the branch structure is β j time units, and that

f the k th function in the loop structure is γ k time units, then av-

rage communication cost of the scheduling sequence is equal to
N 1 ∑

 =1

αi +

N 2 ∑

j=1

β j +

N 3 ∑

k =1

γk .

For the program shown in Fig. 1 , 8 sending statements and

heir matched receiving ones are required to execute so as to reach

he target statement, P 0
11

, under scheduling sequence ss 1 . In other

ords, 8 point-to-point communication operations should be ex-

cuted. Meanwhile, since an integer with four bytes is passed in

ach communication, average communication cost of ss 1 is 8 σ +
2 θ .

For a scheduling sequence, its Halstead measure and average

ommunication cost can be calculated according to the methods

bove. Following that, a comprehensive index value of the schedul-

ng sequence can be obtained through weighted summing the nor-

alized values of the two indexes. Here, the min-max normaliza-

ion method is employed to map the value, ix , of index IX into an-

ther value, ix ′ , in the range of [0,1] by the following formulation

46] , ix ′ = (ix − minI X) / (maxI X − minI X) , where minIX and maxIX

re the minimal and the maximal values of index IX , respectively.

oth indexes proposed here have an important influence on the

xecution of the target statement. Which index has a more im-

ortant influence, however, are related closely to the implemen-

ation environment of the program. For different implementation

nvironments of a message-passing parallel program, these two in-

exes should have different weights.

The approach of reducing scheduling sequences is divided into

he following three steps: determining scheduling sequences that

ffect the tar get statement, forming equivalent classes of schedul-

ng sequences, and selecting a scheduling sequence from each

quivalent class. Each step spends some time in analyzing the

rogram under test. Additionally, if one or several scheduling se-

uences that affect the target statement cannot be sought, and

he existing test data cover the target statement just under these

cheduling sequences, the loss of the statement coverage rate will

e occurred. We will see it in the next section.

. Experiments

In this section, the proposed method of reducing scheduling

equences is applied to test several benchmark programs, and its

erformance is evaluated through a series of experiments. To this

nd, problems to answer in the experiments are first raised. Fol-

owing that, basic information of the benchmark programs and the

xperimental environment are described. Finally, the experimental

esults are fully demonstrated and deeply analyzed.

D. Gong et al. / Information and Software Technology 80 (2016) 217–230 225

Table 2

Basic information of programs under test.

Programs under test # of input variables # of processes # of communication statements

Convex_quadrilateral 4 4 18

Match 5 5 16

Server_client 3 4 6

Server_client_communication 3 4 10

Matrix 16 5 24

Deposit_withdraw 3 4 6

Including 2 6 12

Creator_consumer 2 7 18

Date_swich 6 5 16

Min 125 6 20

Angle 8 12 30

Psd 35 76 290

4

s

b

p

p

p

i

a

i

n

a

g

o

q

t

s

c

a

c

w

s

f

t

i

v

o

4

t

t

f

q

F

p

s

S

t

a

f

[

a

a

p

A

g

h

m

t

M

4

a

g

b

t

m

i

t

s

s

o

l

a

s

C

p

o

t

t

t

s

c

a

(

s

i

8

q

e

1

o

e

q

p

C

.1. Questions to answer

The performance of the proposed method is evaluated by an-

wering the following 3 questions:

Q1: Can scheduling sequences that affect a target statement

e found and their equivalent class(es) formed by using the

roposed method?

Q2: Can the efficiency of covering a target statement be im-

roved by reducing the scheduling sequences using the pro-

osed method? And, will reducing scheduling sequences result

n losses with respect to test thoroughness?

Q3: Can execution cost of a program be reduced by selecting

 scheduling sequence from each equivalent class based on the

ndex system proposed in this paper?

To answer these three questions, first of all, randomly select a

umber of statements from each program under test as the targets,

nd investigate whether scheduling sequences that affect each tar-

et statement can be found and their equivalent classes formed

r not by using the proposed method. Then, the scheduling se-

uences that affect each target statement are reduced by using

he proposed method, and the efficiency of covering each target

tatement is demonstrated by comparing the time consumption for

overing the target statement with the same test data before and

fter reducing scheduling sequences.The corresponding statement

overage rates will also be calculated and compared to reflect that

hether reducing scheduling sequences result in losses with re-

pect to test thoroughness. Finally, select a scheduling sequence

rom each equivalent class by using the proposed index system and

he random method, respectively. The time consumption for cover-

ng each target statement with the same test data is employed to

alidate whether the proposed method can reduce execution cost

f the program or not.

.2. The programs under test and the experimental environment

Twelve benchmark programs are selected as the ones under

est, and their basic information is listed in Table 2 . Among

hese programs, Convex_quadrilateral seeks the smallest three from

our angles, and judges whether they can constitute a convex

uadrilateral or not. Match has the function of matching strings.

or Server_client , it has the master-slave structure, and its main

rocess deals with messages from its slave processes. With re-

pect to Server_client_communication , it is obtained by modifying

erver_client . For the program, Matrix , it has the function of ma-

rix multiplication, and judges the relation between elements of

 matrix. Regarding Deposit_withdraw , it is a program with the

unction of depositing and withdrawing. For Including , it is from

47] and used to determine the location relation between a point

nd a polygon. In addition, Creator_consumer simulates production

nd consumption, Date_swich inspects information related to an in-
ut date, and Min seeks the minimal one among several numbers.

ngle and Psb are industrial programs. They are used to recognize

raphics and simulate special problems respectively.

The experimental environment is configured as follows. The

ardware part includes Intel Core i5 CPU, 500G hard disk, and 4G

emory. The software part contains Windows 8.1 operation sys-

em, Visual Studio 2013 compiler, and MPI application software,

PICH.

.3. Experimental results and analysis

(1) Regarding Q1

To answer Q1, all the branches of each program are investigated,

nd a statement is randomly selected from each branch as the tar-

et one. The target statement set of the program is further formed

y gathering all the target statements. For each target statement in

his set, the method presented in Section 3.1 is employed to deter-

ine scheduling sequences that affect it, and the method proposed

n Section 3.2 is utilized to form a number of equivalent classes of

hese scheduling sequences.

Taking Convex_quadrilateral as an example, this program has 6

cheduling sequences and 11 target statements. For each target

tatement, the number of equivalent classes and the reduction rate

f scheduling sequences obtained by the proposed approach are

isted in Table 3 . In this table, column 1 is the serial number of

 target statement. Column 2 refers to the number of scheduling

equences that affect the target statement, and all of them are 6.

olumn 3 means the number of equivalent classes. The last column

rovides the reduction rate of scheduling sequences. Since only

ne scheduling sequence is selected from each equivalent class,

he number of scheduling sequences after reduction is equal to

hat of equivalent classes. Consequently, the reduction rate is equal

o the ratio of the difference between the number of scheduling

equences that affect the target statement and that of equivalent

lasses to the former. In addition, the last row also lists the aver-

ge value of each of columns 2–4.

Table 3 reports that for the program, Convex_quadrilateral ,

1) different target statements have different reduction rates of

cheduling sequences. Among them, there are two statements hav-

ng the lowest reduction rate, 0. They are target statements 4 and

. This shows that for these two statements, all the scheduling se-

uences affect them, and any pair of scheduling sequences is not

quivalent. In contrast, there are three target statements (9, 10, and

1) that have the highest reduction rate, 83%. This shows that all

f the 6 scheduling sequences that affect them belong to the same

quivalent class. (2) The average reduction rate of scheduling se-

uences for all target statements is 50%. Therefore, the approach

roposed in this paper can greatly reduce scheduling sequences of

onvex_quadrilateral .

226 D. Gong et al. / Information and Software Technology 80 (2016) 217–230

Table 3

The reduction results of scheduling sequences of Convex_quadrilateral .

No. of a target statement # of scheduling sequences that # of equivalent classes Reduction rate(%)

affect the target statement

1 6 3 50

2 6 3 50

3 6 3 50

4 6 6 0

5 6 3 50

6 6 3 50

7 6 3 50

8 6 6 0

9 6 1 83

10 6 1 83

11 6 1 83

Average 6 3 50

Table 4

The reduction results of scheduling sequences of programs under test.

The programs under test # of scheduling

sequences

of target

statements

of scheduling

sequences that affect

target statements

of equivalent

classes

Reduction

rate(%)

Convex_quadrilateral 6 11 6 3 50

Match 24 8 24 2.5 90

Server_client 6 12 2 1 50

Server_client_communication 6 12 2 1 50

Matrix 24 30 24 4.8 80

Deposit_withdraw 6 4 6 3 50

Including 24 10 24 8 67

Creator_consumer 12 11 12 4.7 61

Date_swich 6 12 6 3 50

Min 120 124 120 3.5 97

Angle 5040 267 5040 1684 67

Psd 120 256 120 62 48

Average – – 448.8 148.4 63

d

t

i

d

a

u

m

t

a

t

t

t

e

i

t

g

r

e

t

u

i

p

a

e

t

a

v

t

t
For the other programs, the average reduction results of

scheduling sequences that affect target statements are listed in

Table 4 . In this table, column 1 is the programs under test. Col-

umn 2 refers to the number of scheduling sequences contained in

a program. Column 3 represents the number of target statements.

Column 4 means the number of scheduling sequences that affect

target statements. Column 5 provides the number of equivalent

classes. The last column calculates the reduction rate of scheduling

sequences. In addition, this table also lists the reduction results of

Convex_quadrilateral for convenient comparison.

Table 4 tells that (1) Except Server_client and

Server_client_communication whose a few scheduling sequences

do not affect the target statements, any scheduling sequence of

the other programs affects the target statements. (2) Different

programs have different reduction rates of scheduling sequences.

In these programs, the program with the highest reduction rate,

as high as 97%, is Min . The reason is that for most target state-

ments of this program, scheduling sequences that affect each of

these statements can form only one equivalent class. For all the

scheduling sequences that affect the target statements, the average

number of equivalent classes is only 3.5, reducing a large number

of scheduling sequences. (3) For all the programs, the average

reduction rate of scheduling sequences is as high as 63%.

The experimental results above show that the approach pro-

posed in this paper can find scheduling sequences that affect the

target statement, and form equivalent class(es) of scheduling se-

quences, thus greatly reducing scheduling sequences under which

a program is executed.

(2) Regarding Q2

To answer Q2, first of all, an appropriate method is employed to

generate a test data set that can cover the target statements. Here,

the method of generating the test data set is as follows. The ran-
om method is utilized to generate a test datum. Following that,

he program is executed with the test datum under each schedul-

ng sequence, and the executed statements are recorded. If a test

atum does not execute statements to be covered, it is redundant,

nd not put into the test data set. The process above is repeated,

ntil either all the target statements have been covered, or the

aximal number of runs has been reached. If there are uncovered

arget statements, the static analysis is adopted to manually gener-

te test data. The process of generating test data suggests that the

est data set contains at least one test datum that can cover each

arget statement.

Then, for each target statement of a program under test, the

ime consumption for covering the target statement with the gen-

rated test data set is compared between before and after reduc-

ng scheduling sequences, so as to demonstrate the efficiency of

he proposed approach in covering the target statement. In this

roup of experiments, the scheduling sequence after reduction is

andomly selected from each equivalent class.

Before reducing scheduling sequences, a program under test is

xecuted with a test datum under each scheduling sequence. Af-

er reduction, the program is executed with the same test datum

nder each scheduling sequence after reduction. To eliminate the

nfluence of the experimental environment on the execution of a

rogram, each experiment is repeatedly done 50 times, and the

verage value of these experimental results is calculated. In each

xperiment, the scheduling sequences are randomly selected from

heir equivalent classes, indicating that the scheduling sequences

fter reduction selected for two experiments may not be same.

The execution time for covering the target statements of Con-

ex_quadrilateral is listed in Table 5 . In this table, column 1 is

he serial number of a target statement. Column 2 represents the

ime consumption for covering target statements before reducing

D. Gong et al. / Information and Software Technology 80 (2016) 217–230 227

Table 5

The time consumption for covering the target statements of Convex_quadrilateral .

No. of a target statement Before reduction(ms) After reduction(ms) Time reduction rate (%)

1 0.048 0.053 -10

2 0.056 0.056 0

3 0.394 0.226 43

4 2.475 2.475 0

5 2.818 1.433 49

6 1.435 0.739 49

7 1.73 0.894 48

8 2.075 2.075 0

9 0.594 0.127 79

10 0.266 0.079 70

11 0.032 0.009 72

Average 1.084 0.742 32

Table 6

The time consumption for covering the target statements of the programs under test.

The programs under test Before reduction(ms) After reduction(ms) Time reduction rate (%)

Convex_quadrilateral 1 .084 0 .742 32

Match 2 .227 0 .31 86

Server_client 0 .119 0 .027 77

Server_client_communication 0 .149 0 .049 67

Matrix 1 .42 0 .255 82

Deposit_withdraw 0 .362 0 .186 49

Including 0 .738 0 .16 78

Creator_consumer 0 .862 0 .229 73

Date_swich 1 .03 0 .445 57

Min 5 .353 0 .136 98

Angle 38 .583 15 .642 59

Psd 612 .821 306 .868 48

Average 55 .396 27 .087 67

s

c

u

d

t

a

t

p

a

f

a

o

s

s

r

e

d

e

g

i

a

r

s

g

e

c

h

a

n

f

m

t

s

c

r

d

t

F

m

c

i

p

e

i

l

e

a

i

t

s

q

a

A

d

f

s

g

t

i

a

T

i
cheduling sequences. Column 3 means the time consumption for

overing the same target statements after reduction. The last col-

mn provides the time reduction rate which is the ratio of the re-

uced time consumption after reducing scheduling sequences to

he time consumption before reduction. In addition, the last row

lso lists the average value of each of columns 2–4.

Table 5 shows that (1) for target statements 2, 4, and 8, the

ime reduction rate is 0, suggesting that execution time of this

rogram is not shortened by reducing scheduling sequences. There

re two possible reasons. One is that scheduling sequences that af-

ect the target statements are not reduced by using the proposed

pproach; the other is that this program is executed in a special

rder of scheduling sequences after reduction, causing the target

tatements to be covered early, thus the advantage of reducing

cheduling sequences cannot been fully demonstrated. (2) The time

eduction rate of target statement 1 is negative, indicating that ex-

cution time of this program is not shortened, but increased by re-

ucing scheduling sequences. This may be due to the uncertain ex-

cution of the program. (3) Among these 11 target statements, tar-

et statement 9 has the maximal time reduction rate, 79%, which

s equivalent to saving four-fifths of the time consumption. (4) For

ll target statements, the average time reduction rate is 32% after

educing scheduling sequences, meaning that reducing scheduling

equences is helpful to shorten execution time for covering the tar-

et statements of Convex_quadrilateral .

For the other programs, the average time consumption for cov-

ring the target statements is listed in Table 6 . In this table, except

olumn 1 that represents the programs under test, columns 2–4

ave the same meaning as those in Table 5 . In addition, this table

lso lists the time consumption of Convex_quadrilateral for conve-

ient comparison.

Table 6 demonstrates that (1) the time reduction rates of dif-

erent programs are different. Among these programs, Min has the

aximal time reduction rate, 98%. The reason is that for most
arget statements of this program, only one equivalent class of

cheduling sequences is formed, which makes the program exe-

uted with a test datum under 120 scheduling sequences before

eduction; whereas it is executed with the same test datum un-

er only 1 scheduling sequence after reduction. The program with

he minimal time reduction rate, 32%, is Convex_quadrilateral . (2)

or all these 12 programs, the average time reduction rate is 67%,

eaning that more than half of execution time of a program for

overing target statements can be shortened by reducing schedul-

ng sequences using the proposed approach.

The experimental results above show that the proposed ap-

roach of reducing scheduling sequences can greatly shorten ex-

cution time of a program for covering the target statement, hence

mproving the efficiency of testing the program.

To illustrate whether reducing scheduling sequences results in

osses with respect to test thoroughness or not, the statement cov-

rage rates before and after reducing scheduling sequences are

lso calculated through experiments. The statement coverage rate

s the ratio of the number of target statements being covered to

hat of all the target statements. For the programs under test, their

tatement coverage rates before and after reducing scheduling se-

uences are listed in Table 7 .

Table 7 demonstrates that the statement coverage rates before

nd after reducing scheduling sequences are all 1 but program

ngle . This means that reducing scheduling sequences slightly re-

uces the statement coverage rate of program Angle , and has a

aint negative influence on its test thoroughness. The possible rea-

on is that not all the scheduling sequences that affect the tar-

et statement can be sought, and the generated test data cover

he target statement just under the scheduling sequences not be-

ng sought. As a result, several target statements are not covered

fter reducing scheduling sequences. But, as can be seen from

able 7 , reducing scheduling sequences does not have any negative

nfluence on most programs test thoroughness, and program Angle

228 D. Gong et al. / Information and Software Technology 80 (2016) 217–230

Table 7

The statement coverage rate of the programs under test.

The programs under test Before reduction After reduction

Convex_quadrilateral 1 1

Match 1 1

Server_client 1 1

Server_client_communication 1 1

Matrix 1 1

Deposit_withdraw 1 1

Including 1 1

Creator_consumer 1 1

Date_swich 1 1

Min 1 1

Angle 1 0.993

Psd 1 1

Table 8

Communication time for passing a piece of message.

The size of a message(Kb) Communication time(μs)

1 4 .87

32 23 .07

64 33 .16

128 59 .79

256 93 .82

Table 9

The value of each index and the comprehensive value of a scheduling sequence

of Including .

No. of a scheduling

sequence

Halstead

measure

Average

communication

cost(μs)

The comprehensive

value

1 46 40.8 0

2 46 61.2 0.8

3 78 61.2 1

Table 10

The time consumption for covering the target statement under a scheduling se-

quence selected by different approaches (for Including).

No. of a target

statement

Random

selection (μs)

The proposed

selecting approach

(μs)

The time reduction

rate (%)

1 42 7 83

2 278 59 79

3 16 9 44

4 278 54 81

5 46 7 85

6 267 53 80

Average 154.5 31.5 80

b

s

o

s

m

o

s

s

f

p

u

p

f

i

a

t

s

b

u

s

t

e

p

m

m

t

u

b

m

a

s

a

b

s

a

i
statement coverage rate only has a bit less of 0.007. This problem

can be solved by either generating additional test data, or increas-

ing the accuracy in seeking scheduling sequences. We can conclude

that reducing scheduling sequences basically has no negative influ-

ence on the test thoroughness.

(3) Regarding Q3

To answer Q3, the values of indexes of each scheduling se-

quence that affects the target statement is first calculated. Two

indexes are considered in this paper, among which the second is

average communication cost.

When calculating average communication cost of a scheduling

sequence, the values of parameters σ and θ are required to known.

Here, the method of Ping-Pong is employed to get them with its

idea being as follows [48] . Process i first sends a message with n

bytes to process j , and waits for another message sent by process j .

Meanwhile, process j executes a receiving statement, and once this

process receives the message sent by process i , it will return an-

other message to process i . The process above is repeated several

times, and the time consumption for passing a piece of message

is calculated for each time, then its average time consumption is

calculated. The time consumption for each communication is equal

to a half of the average above. The time consumption for passing a

piece of message with different lengths can be obtained by chang-

ing the number of bytes contained in this message.

Communication time for passing a piece of message is listed in

Table 8 based on the experimental environment provided in this

paper. In this table, column 1 represents the number of bytes con-

tained in a piece of message. Column 2 is communication time

for passing a piece of message. Based on these data, the val-

ues of σ and θ can be obtained by the first-order linear fitting,

i.e., σ= 10 . 2 , θ= 3 . 32 × 1 0 −4 . That is to say, the delay of point-to-

point communication is 10.2 μs, and the time consumption for

passing a byte is 3 . 32 × 10 −4 μs.

Taking the first equivalent class of target statement 1 of pro-

gram Including as an example. The value of each index and the

comprehensive value of each scheduling sequence in this equiva-

lent class are listed in Table 9 . When calculating the comprehen-

sive value of a scheduling sequence, the weights of Halstead mea-

sure and average communication cost are set to 0.2 and 0.8, re-

spectively, based on the experimental environment of this paper.
The less the comprehensive value of a scheduling sequence, the

etter the scheduling sequence. So, the first scheduling sequence is

elected from this equivalent class. For the other equivalent classes

f target statement 1, the comprehensive value of each scheduling

equence is also calculated, and the scheduling sequence with the

inimal value is selected. Further, for the other target statements

f the program, the same method is employed to select scheduling

equences.

To evaluate the rationality of indexes proposed in this paper, a

cheduling sequence is selected from each equivalent class that af-

ects the target statement by using the approach proposed in this

aper, and the time consumption for covering the target statement

nder the selected scheduling sequence is calculated, and com-

ared with that under a scheduling sequence randomly selected

rom the equivalent class. For each target statement, the program

s repeatedly executed 50 times, the time consumption is recorded,

nd the average is then calculated.

Taking program Including as an example, the time consump-

ion for covering the target statement under a scheduling sequence

elected by different methods is listed in Table 10 . In this ta-

le, column 1 is the serial number of a target statement. Col-

mn 2 means the time consumption when randomly selecting a

cheduling sequence from each equivalent class. Column 3 refers to

he time consumption when selecting a scheduling sequence from

ach equivalent class by using the approach proposed in this pa-

er. The last column is the time reduction rate, whose calculation

ethod has been provided before.

Table 10 tells that for program Including , (1) the one with the

aximal reduction rate of 85% is target statement 5, indicating

hat more than four-fifths of the time consumption can be saved

nder the scheduling sequence selected from each equivalent class

y using the approach proposed in this paper. (2) Target state-

ent 3 has the minimal time reduction rate. Even so, its value is

lso close to 50%. Therefore, execution time of this program can be

hortened nearly half. (3) For all these target statements, the aver-

ge time reduction rate is 80%, suggesting that execution time can

e greatly saved by executing the program under the scheduling

equences selected by the proposed approach.

It is worth noting that the number of target statements when

nswering Q3 is less than that when answering Q2. The reason

s explained as follows. When evaluating a scheduling sequence,

D. Gong et al. / Information and Software Technology 80 (2016) 217–230 229

Table 11

The time consumption for covering the target statements under the scheduling sequences selected by different approaches (for all programs).

The programs under test # of target statements Random selection (μs) The proposed selecting approach (μs) The time reduction rate (%)

Server_client 4 25.5 19.5 24

Server_client_communication 4 39 7.5 81

Deposit_withdraw 3 743 439 41

Including 6 927 189 80

Creator_consumer 5 689 193 72

Date_swich 6 2167 1619 25

Angle 217 151 105 30

Psd 186 64 ,779 52 ,106 20

Average – 8690 6834 52

s

s

p

d

s

p

f

e

l

b

c

c

t

c

e

b

S

8

t

r

p

a

m

s

i

d

l

i

p

fi

5

p

fi

t

s

S

t

i

i

p

g

a

c

t

a

e

i

s

o

s

t

c

o

c

t

d

i

e

m

p

t

g

t

f

A

F

R

ome scheduling sequences in the same equivalent class have the

ame comprehensive value. On this circumstance, the proposed ap-

roach to selecting scheduling sequences will degenerate to ran-

omly select, and have the same selection results as the random

election method. So only the target statements for which the pro-

osed approach is suitable are listed in Table 10 . The same is true

or the target statements in Table 11 .

For the other programs, the average time consumption for cov-

ring the target statements under the scheduling sequences se-

ected by different approaches is listed in Table 11 . In this ta-

le, except that column 1 represents the programs under test, and

olumn 2 refers to the number of target statements, the other

olumns have the same meaning as those in Table 10 . In addition,

his table also lists the time consumption of program Including for

onvenient comparison.

Table 11 shows that (1) different programs have differ-

nt time reduction rates when selecting scheduling sequences

y using the proposed method. Among these programs,

erver_client_communication has the largest time reduction rate of

1%, indicating that more than three-fourths of execution time of

his program can be shortened. The program with the minimal

eduction rate is Psd . Even so, one-fifth of execution time of this

rogram is saved. (2) For all the programs listed in this table, the

verage time reduction rate is 46%, suggesting that the proposed

ethod can save nearly half of execute time of the random

election method.

The experimental results above show that selecting a schedul-

ng sequence from each equivalent class by using the proposed in-

ex system can greatly reduce execution cost of a program.

By answering the three questions raised in Section 4.1 , the fol-

owing conclusion can be drawn: the proposed approach to reduc-

ng scheduling sequences can greatly shorten execution time of a

rogram for covering the target statement, hence improving the ef-

ciency of testing the program.

. Conclusions

This paper focuses on the problem of testing message-passing

arallel programs, a kind of widely used parallel programs. The ef-

ciency of testing message-passing parallel programs is expected

o increase by reducing scheduling sequences. The approach pre-

ented in this paper can be divided into the following three steps.

cheduling sequences that affect the target statement are first de-

ermined. Following that, these scheduling sequences are divided

nto a number of equivalent classes. Finally, a scheduling sequence

s selected from each equivalent class. The efficiency of testing a

arallel program can be greatly improved when executing the pro-

ram under the scheduling sequences after reduction.

To evaluate the performance of the proposed approach, it is

pplied to test 12 typical message-passing parallel programs, and

ompared with other approaches. The experimental results show

hat the proposed approach can greatly shorten execution time of
 program for covering the target statement, hence improving the

fficiency of testing the program.

It is worth mentioning that the approach to reducing schedul-

ng sequences presented in this paper considers only one target

tatement. In practice, a program, especially a complex program,

ften has a lot of statements required to test. If multiple target

tatements are simultaneously considered, scheduling sequences

hat affect these target statements are different from those when

onsidering only one target statement, and are not a simple union

f scheduling sequences that affect each target statement. On this

ircumstance, determining scheduling sequences that affect mul-

iple target statements, and further classifying them so as to re-

uce scheduling sequences is a very challenging topic. In addition,

f proper approaches are utilized to reflect the complexity of an

quivalent class, and further the equivalent class with the mini-

al complexity is selected so as to reduce scheduling sequences or

rioritize scheduling sequences by using the presented approach,

he efficiency of testing message-passing parallel programs will be

reatly improved. Unfortunately, there is no approach to evaluating

he complexity of an equivalent class so far. In the future, we will

urther research these topics.

cknowledgements

This work is jointly supported by National Natural Science

oundation of China with grant No. 61375067 and No. 61503220 .

eferences

[1] B. Beizer , Software Testing Techniques, Van Nostrand Reinhold, 1990 .
[2] J.C. Munson , Software Engineering Measurement, CRC Press, 2003 .

[3] S.R. Souza , M.A.S. Brito , R.A. Silva , P.S.L. Souza , E. Zaluska , Research in Concur-

rent Software Testing: A Systematic Review, in: Proceedings of the Workshop
on Parallel and Distributed Systems: Testing, Analysis, and Debugging, ACM,

2011, pp. 1–5 .
[4] G.L. Chen , Parallel Computing: Structure Algorithm Programming, Higher Edu-

cation Press, 2011 .
[5] Z.H. Du , S.L. Li , Y. Chen , P. Liu , Parallel programming technology of high per-

formance computing—MPI parallel programming, Beijing: Tsinghua University

press, 2001 .
[6] M. Christakis , K. Sagonas , Detection of asynchronous message passing errors

using static analysis, Springer, 2011, pp. 5–18 .
[7] A. Miné, Static analysis of run-time errors in embedded critical parallel C pro-

grams, in: European Symposium on Programming, Springer, 2011, pp. 398–418 .
[8] S.F. Siegel , T.K. Zirkel , Automatic formal verification of MPI-based parallel pro-

grams, ACM SIGPLAN Notices 46 (8) (2011) 309–310 .

[9] C. Flanagan , P. Godefroid , Dynamic partial-order reduction for model checking
software, ACM SIGPLAN Notices 40 (1) (2005) 110–121 .

[10] S. Vakkalanka , M. DeLisi , G. Gopalakrishnan , R.M. Kirby , R. Thakur , W. Gropp ,
Implementing efficient dynamic formal verification methods for MPI programs,

in: European Parallel Virtual Machine/Message Passing Interface Usersí¯ Group
Meeting, Springer, 2008, pp. 248–256 .

[11] B. Krammer , M.M. Resch , Correctness Checking of MPI One-Sided Communica-
tion Using Marmot, Springer, 2006, pp. 105–114 .

[12] J.S. Vetter , B.R. De Supinski , Dynamic Software Testing of MPI Applications

with Umpire, in: Supercomputing, ACM/IEEE 20 0 0 Conference, IEEE, 20 0 0,
p. 51 .

[13] M.Y. Park , S.J. Shim , Y.K. Jun , H.R. Park , Mpirace-check: Detection of message
races in MPI programs, in: International Conference on Grid and Pervasive

Computing, Springer, 2007, pp. 322–333 .

http://dx.doi.org/10.13039/501100001809
http://refhub.elsevier.com/S0950-5849(16)30145-8/sbref0001
http://refhub.elsevier.com/S0950-5849(16)30145-8/sbref0001
http://refhub.elsevier.com/S0950-5849(16)30145-8/sbref0002
http://refhub.elsevier.com/S0950-5849(16)30145-8/sbref0002
http://refhub.elsevier.com/S0950-5849(16)30145-8/sbref0003
http://refhub.elsevier.com/S0950-5849(16)30145-8/sbref0003
http://refhub.elsevier.com/S0950-5849(16)30145-8/sbref0003
http://refhub.elsevier.com/S0950-5849(16)30145-8/sbref0003
http://refhub.elsevier.com/S0950-5849(16)30145-8/sbref0003
http://refhub.elsevier.com/S0950-5849(16)30145-8/sbref0003
http://refhub.elsevier.com/S0950-5849(16)30145-8/sbref0004
http://refhub.elsevier.com/S0950-5849(16)30145-8/sbref0004
http://refhub.elsevier.com/S0950-5849(16)30145-8/sbref0005
http://refhub.elsevier.com/S0950-5849(16)30145-8/sbref0005
http://refhub.elsevier.com/S0950-5849(16)30145-8/sbref0005
http://refhub.elsevier.com/S0950-5849(16)30145-8/sbref0005
http://refhub.elsevier.com/S0950-5849(16)30145-8/sbref0005
http://refhub.elsevier.com/S0950-5849(16)30145-8/sbref0006
http://refhub.elsevier.com/S0950-5849(16)30145-8/sbref0006
http://refhub.elsevier.com/S0950-5849(16)30145-8/sbref0006
http://refhub.elsevier.com/S0950-5849(16)30145-8/sbref0007
http://refhub.elsevier.com/S0950-5849(16)30145-8/sbref0007
http://refhub.elsevier.com/S0950-5849(16)30145-8/sbref0008
http://refhub.elsevier.com/S0950-5849(16)30145-8/sbref0008
http://refhub.elsevier.com/S0950-5849(16)30145-8/sbref0008
http://refhub.elsevier.com/S0950-5849(16)30145-8/sbref0009
http://refhub.elsevier.com/S0950-5849(16)30145-8/sbref0009
http://refhub.elsevier.com/S0950-5849(16)30145-8/sbref0009
http://refhub.elsevier.com/S0950-5849(16)30145-8/sbref0010
http://refhub.elsevier.com/S0950-5849(16)30145-8/sbref0010
http://refhub.elsevier.com/S0950-5849(16)30145-8/sbref0010
http://refhub.elsevier.com/S0950-5849(16)30145-8/sbref0010
http://refhub.elsevier.com/S0950-5849(16)30145-8/sbref0010
http://refhub.elsevier.com/S0950-5849(16)30145-8/sbref0010
http://refhub.elsevier.com/S0950-5849(16)30145-8/sbref0010
http://refhub.elsevier.com/S0950-5849(16)30145-8/sbref0011
http://refhub.elsevier.com/S0950-5849(16)30145-8/sbref0011
http://refhub.elsevier.com/S0950-5849(16)30145-8/sbref0011
http://refhub.elsevier.com/S0950-5849(16)30145-8/sbref0012
http://refhub.elsevier.com/S0950-5849(16)30145-8/sbref0012
http://refhub.elsevier.com/S0950-5849(16)30145-8/sbref0012
http://refhub.elsevier.com/S0950-5849(16)30145-8/sbref0013
http://refhub.elsevier.com/S0950-5849(16)30145-8/sbref0013
http://refhub.elsevier.com/S0950-5849(16)30145-8/sbref0013
http://refhub.elsevier.com/S0950-5849(16)30145-8/sbref0013
http://refhub.elsevier.com/S0950-5849(16)30145-8/sbref0013

230 D. Gong et al. / Information and Software Technology 80 (2016) 217–230

[

[14] Y. Lei , R.H. Carver , Reachability testing of concurrent programs, IEEE Trans.
Softw. Eng. 32 (6) (2006) 382–403 .

[15] R.H. Carver , Y. Lei , Distributed reachability testing of concurrent programs,
Concurrency Comput. 22 (18) (2010) 2445–2466 .

[16] S. Shivaprasad , N. Prasad , Unit testing concurrent java programs, Int. J. Comput.
Appl. 67 (10) (2013) 41–46 .

[17] G.H. Hwang , H.Y. Lin , S.Y. Lin , C.S. Lin , Statement-coverage testing for nonde-
terministic concurrent programs, in: International Symposium on Theoretical

Aspects of Software Engineering, IEEE, 2012, pp. 263–266 .

[18] R. Ferguson , B. Korel , Generating test data for distributed software using the
chaining approach, Inf. Softw. Technol. 38 (5) (1996) 343–353 .

[19] T. Tian , D.W. Gong , Test data generation for path coverage of message-passing
parallel programs based on co-evolutionary genetic algorithms, Autom. Softw.

Eng. (2014) 1–32 .
[20] Q. Chen , L. Wang , Z. Yang , S.D. Stoller , HAVE: detecting atomicity violations via

integrated dynamic and static analysis, in: International Conference on Funda-

mental Approaches to Software Engineering, Springer, 2009, pp. 425–439 .
[21] J. Schimmel , K. Molitorisz , A. Jannesari , W.F. Tichy , Automatic generation of

parallel unit tests, in: Proceedings of the 8th International Workshop on Au-
tomation of Software Test, IEEE Press, 2013, pp. 40–46 .

[22] M.X. Liao , Z.H. Fan , Deadlock detection in basic models of MPI synchronization
communication programs, Acta Electronica Sinica 36 (2) (2008) 402–407 .

[23] C.S.D. Yang , L.L. Pollock , All-uses testing of shared memory parallel programs,

Softw. Testing, Verification Reliab. 13 (1) (2003) 3–24 .
[24] C.S.D. Yang , A.L. Souter , L.L. Pollock , All-du-path coverage for parallel programs,

in: ACM SIGSOFT Software Engineering Notes, Vol. 23, ACM, 1998, pp. 153–162 .
[25] S. Souza , S.R. Vergilio , P. Souza , A . Simao , A .C. Hausen , Structural testing cri-

teria for message-passing parallel programs, Concurrency Comput. 20 (16)
(2008) 1893–1916 .

[26] A. Sen , M.S. Abadir , Coverage metrics for verification of concurrent SystemC

designs using mutation testing, in: High Level Design Validation and Test
Workshop (HLDVT), IEEE, 2010, pp. 75–81 .

[27] S.D. Conte , H.E. Dunsmore , V.Y. Shen , Software Engineering Metrics and Mod-
els, Benjamin-Cummings Publishing Co., Inc., 1986 .

[28] J. Ferrer , F. Chicano , E. Alba , Estimating software testing complexity, Inf. Softw.
Technol. 55 (12) (2013) 2125–2139 .

[29] B.A. Nejmeh , NPATH: a measure of execution path complexity and its applica-

tions, Commun. ACM 31 (2) (1988) 188–200 .
[30] T.J. McCabe , A complexity measure, IEEE Trans. Softw. Eng. (4) (1976) 308–320 .

[31] M.H. Halstead , Elements of Software Science (Operating and Programming Sys-
tems Series), Elsevier New York, 1977 .

[32] T. Tian , D.W. Gong , Evolutionary generation of test data for path coverage
through selecting target paths based on coverage difficulty, J. Zhejiang Univ.

(Eng. Sci.) 5 (2014) 22–30 .
[33] M.K. Debbarma , N. Kar , A. Saha , Static and dynamic software metrics complex-
ity analysis in regression testing, in: 2012 International Conference on Com-

puter Communication and Informatics (ICCCI), IEEE, 2012, pp. 1–6 .
[34] M. Papadakis , N. Malevris , Mutation based test case generation via a path se-

lection strategy, Inf. Softw. Technol. 54 (9) (2012) 915–932 .
[35] D. Culler , R. Karp , D. Patterson , A. Sahay , K.E. Schauser , E. Santos , R. Subramo-

nian , T. Von Eicken , LogP: Towards a realistic model of parallel computation,
in: ACM Sigplan Notices, Vol. 28, ACM, 1993, pp. 1–12 .

[36] A. Alexandrov , M.F. Ionescu , K.E. Schauser , C. Scheiman , LogGP: incorporating

long messages into the LogP modelí¬one step closer towards a realistic model
for parallel computation, in: Proceedings of the seventh annual ACM sympo-

sium on Parallel algorithms and architectures, ACM, 1995, pp. 95–105 .
[37] F. Ino , N. Fujimoto , K. Hagihara , LogGPS: a parallel computational model

for synchronization analysis, in: ACM SIGPLAN Notices, Vol. 36, ACM, 2001,
pp. 133–142 .

[38] C.A. Moritz , M.I. Frank , LoGPC: Modeling network contention in message-pass-

ing programs, in: ACM SIGMETRICS Performance Evaluation Review, Vol. 26,
ACM, 1998, pp. 254–263 .

[39] T.H. Cormen , M.T. Goodrich , A bridging model for parallel computation, com-
munication, and i/o, ACM Comput. Surv. (CSUR) 28 (4es) (1996) 208 .

[40] S.E. Hambrusch , A. Khokhar , et al. , C 3: An architecture-independent model
for coarse-grained parallel machines, in: IEEE Symposium on Parallel & Dis-

tributed Processing, IEEE, 1994, pp. 544–551 .

[41] R. Thakur , R. Rabenseifner , W. Gropp , Optimization of collective communica-
tion operations in MPICH, Int. J. High Perform. Comput. Appl. 19 (1) (2005)

49–66 .
[42] K.J. Ottenstein , L.M. Ottenstein , The program dependence graph in a soft-

ware development environment, in: ACM Sigplan Notices, Vol. 19, ACM, 1984,
pp. 177–184 .

[43] J. Cheng , Slicing concurrent programs-AGraph-Theoretical approach, Autom. Al-

gorithmic Debugging (1993) 223–240 .
44] D. Pan , Researeh on exact model and complexity for task assignment problem

in multi-core environment, Dalian University of Technology, 2009 Master’s the-
sis .

[45] C.Q. Zhong , Software test data generation and defect detection based on dom-
inant relationship between statements, China University of Mining and Tech-

nology, 2014 Master’s thesis .

[46] L.P. Ma , The study and use of modern statistical analysis methods(three): Stan-
dardization of statistical data-dimensionless method 03 (20 0 0) 34–35 .

[47] G.L. Chen , H. An , L. Chen , et al. , Parallel Algorithm Practice, Higher Education
Press, 2004 .

[48] H. Liu , B. Dai , Y. Zhang , W.-B. Zhang , Simple logp model’s parameters simulate,
J. Univ. Electron. Sci. Technol. China 34 (2) (2005) 229–232 .

http://refhub.elsevier.com/S0950-5849(16)30145-8/sbref0014
http://refhub.elsevier.com/S0950-5849(16)30145-8/sbref0014
http://refhub.elsevier.com/S0950-5849(16)30145-8/sbref0014
http://refhub.elsevier.com/S0950-5849(16)30145-8/sbref0015
http://refhub.elsevier.com/S0950-5849(16)30145-8/sbref0015
http://refhub.elsevier.com/S0950-5849(16)30145-8/sbref0015
http://refhub.elsevier.com/S0950-5849(16)30145-8/sbref0016
http://refhub.elsevier.com/S0950-5849(16)30145-8/sbref0016
http://refhub.elsevier.com/S0950-5849(16)30145-8/sbref0016
http://refhub.elsevier.com/S0950-5849(16)30145-8/sbref0017
http://refhub.elsevier.com/S0950-5849(16)30145-8/sbref0017
http://refhub.elsevier.com/S0950-5849(16)30145-8/sbref0017
http://refhub.elsevier.com/S0950-5849(16)30145-8/sbref0017
http://refhub.elsevier.com/S0950-5849(16)30145-8/sbref0017
http://refhub.elsevier.com/S0950-5849(16)30145-8/sbref0018
http://refhub.elsevier.com/S0950-5849(16)30145-8/sbref0018
http://refhub.elsevier.com/S0950-5849(16)30145-8/sbref0018
http://refhub.elsevier.com/S0950-5849(16)30145-8/sbref0019
http://refhub.elsevier.com/S0950-5849(16)30145-8/sbref0019
http://refhub.elsevier.com/S0950-5849(16)30145-8/sbref0019
http://refhub.elsevier.com/S0950-5849(16)30145-8/sbref0020
http://refhub.elsevier.com/S0950-5849(16)30145-8/sbref0020
http://refhub.elsevier.com/S0950-5849(16)30145-8/sbref0020
http://refhub.elsevier.com/S0950-5849(16)30145-8/sbref0020
http://refhub.elsevier.com/S0950-5849(16)30145-8/sbref0020
http://refhub.elsevier.com/S0950-5849(16)30145-8/sbref0021
http://refhub.elsevier.com/S0950-5849(16)30145-8/sbref0021
http://refhub.elsevier.com/S0950-5849(16)30145-8/sbref0021
http://refhub.elsevier.com/S0950-5849(16)30145-8/sbref0021
http://refhub.elsevier.com/S0950-5849(16)30145-8/sbref0021
http://refhub.elsevier.com/S0950-5849(16)30145-8/sbref0022
http://refhub.elsevier.com/S0950-5849(16)30145-8/sbref0022
http://refhub.elsevier.com/S0950-5849(16)30145-8/sbref0022
http://refhub.elsevier.com/S0950-5849(16)30145-8/sbref0023
http://refhub.elsevier.com/S0950-5849(16)30145-8/sbref0023
http://refhub.elsevier.com/S0950-5849(16)30145-8/sbref0023
http://refhub.elsevier.com/S0950-5849(16)30145-8/sbref0024
http://refhub.elsevier.com/S0950-5849(16)30145-8/sbref0024
http://refhub.elsevier.com/S0950-5849(16)30145-8/sbref0024
http://refhub.elsevier.com/S0950-5849(16)30145-8/sbref0024
http://refhub.elsevier.com/S0950-5849(16)30145-8/sbref0025
http://refhub.elsevier.com/S0950-5849(16)30145-8/sbref0025
http://refhub.elsevier.com/S0950-5849(16)30145-8/sbref0025
http://refhub.elsevier.com/S0950-5849(16)30145-8/sbref0025
http://refhub.elsevier.com/S0950-5849(16)30145-8/sbref0025
http://refhub.elsevier.com/S0950-5849(16)30145-8/sbref0025
http://refhub.elsevier.com/S0950-5849(16)30145-8/sbref0026
http://refhub.elsevier.com/S0950-5849(16)30145-8/sbref0026
http://refhub.elsevier.com/S0950-5849(16)30145-8/sbref0026
http://refhub.elsevier.com/S0950-5849(16)30145-8/sbref0027
http://refhub.elsevier.com/S0950-5849(16)30145-8/sbref0027
http://refhub.elsevier.com/S0950-5849(16)30145-8/sbref0027
http://refhub.elsevier.com/S0950-5849(16)30145-8/sbref0027
http://refhub.elsevier.com/S0950-5849(16)30145-8/sbref0028
http://refhub.elsevier.com/S0950-5849(16)30145-8/sbref0028
http://refhub.elsevier.com/S0950-5849(16)30145-8/sbref0028
http://refhub.elsevier.com/S0950-5849(16)30145-8/sbref0028
http://refhub.elsevier.com/S0950-5849(16)30145-8/sbref0029
http://refhub.elsevier.com/S0950-5849(16)30145-8/sbref0029
http://refhub.elsevier.com/S0950-5849(16)30145-8/sbref0030
http://refhub.elsevier.com/S0950-5849(16)30145-8/sbref0030
http://refhub.elsevier.com/S0950-5849(16)30145-8/sbref0031
http://refhub.elsevier.com/S0950-5849(16)30145-8/sbref0031
http://refhub.elsevier.com/S0950-5849(16)30145-8/sbref0032
http://refhub.elsevier.com/S0950-5849(16)30145-8/sbref0032
http://refhub.elsevier.com/S0950-5849(16)30145-8/sbref0032
http://refhub.elsevier.com/S0950-5849(16)30145-8/sbref0033
http://refhub.elsevier.com/S0950-5849(16)30145-8/sbref0033
http://refhub.elsevier.com/S0950-5849(16)30145-8/sbref0033
http://refhub.elsevier.com/S0950-5849(16)30145-8/sbref0033
http://refhub.elsevier.com/S0950-5849(16)30145-8/sbref0034
http://refhub.elsevier.com/S0950-5849(16)30145-8/sbref0034
http://refhub.elsevier.com/S0950-5849(16)30145-8/sbref0034
http://refhub.elsevier.com/S0950-5849(16)30145-8/sbref0035
http://refhub.elsevier.com/S0950-5849(16)30145-8/sbref0035
http://refhub.elsevier.com/S0950-5849(16)30145-8/sbref0035
http://refhub.elsevier.com/S0950-5849(16)30145-8/sbref0035
http://refhub.elsevier.com/S0950-5849(16)30145-8/sbref0035
http://refhub.elsevier.com/S0950-5849(16)30145-8/sbref0035
http://refhub.elsevier.com/S0950-5849(16)30145-8/sbref0035
http://refhub.elsevier.com/S0950-5849(16)30145-8/sbref0035
http://refhub.elsevier.com/S0950-5849(16)30145-8/sbref0035
http://refhub.elsevier.com/S0950-5849(16)30145-8/sbref0036
http://refhub.elsevier.com/S0950-5849(16)30145-8/sbref0036
http://refhub.elsevier.com/S0950-5849(16)30145-8/sbref0036
http://refhub.elsevier.com/S0950-5849(16)30145-8/sbref0036
http://refhub.elsevier.com/S0950-5849(16)30145-8/sbref0036
http://refhub.elsevier.com/S0950-5849(16)30145-8/sbref0037
http://refhub.elsevier.com/S0950-5849(16)30145-8/sbref0037
http://refhub.elsevier.com/S0950-5849(16)30145-8/sbref0037
http://refhub.elsevier.com/S0950-5849(16)30145-8/sbref0037
http://refhub.elsevier.com/S0950-5849(16)30145-8/sbref0038
http://refhub.elsevier.com/S0950-5849(16)30145-8/sbref0038
http://refhub.elsevier.com/S0950-5849(16)30145-8/sbref0038
http://refhub.elsevier.com/S0950-5849(16)30145-8/sbref0039
http://refhub.elsevier.com/S0950-5849(16)30145-8/sbref0039
http://refhub.elsevier.com/S0950-5849(16)30145-8/sbref0039
http://refhub.elsevier.com/S0950-5849(16)30145-8/sbref0040
http://refhub.elsevier.com/S0950-5849(16)30145-8/sbref0040
http://refhub.elsevier.com/S0950-5849(16)30145-8/sbref0040
http://refhub.elsevier.com/S0950-5849(16)30145-8/sbref0040
http://refhub.elsevier.com/S0950-5849(16)30145-8/sbref0041
http://refhub.elsevier.com/S0950-5849(16)30145-8/sbref0041
http://refhub.elsevier.com/S0950-5849(16)30145-8/sbref0041
http://refhub.elsevier.com/S0950-5849(16)30145-8/sbref0041
http://refhub.elsevier.com/S0950-5849(16)30145-8/sbref0042
http://refhub.elsevier.com/S0950-5849(16)30145-8/sbref0042
http://refhub.elsevier.com/S0950-5849(16)30145-8/sbref0042
http://refhub.elsevier.com/S0950-5849(16)30145-8/sbref0043
http://refhub.elsevier.com/S0950-5849(16)30145-8/sbref0043
http://refhub.elsevier.com/S0950-5849(16)30145-8/sbref0044
http://refhub.elsevier.com/S0950-5849(16)30145-8/sbref0044
http://refhub.elsevier.com/S0950-5849(16)30145-8/sbref0045
http://refhub.elsevier.com/S0950-5849(16)30145-8/sbref0045
http://refhub.elsevier.com/S0950-5849(16)30145-8/sbref0046
http://refhub.elsevier.com/S0950-5849(16)30145-8/sbref0046
http://refhub.elsevier.com/S0950-5849(16)30145-8/sbref0047
http://refhub.elsevier.com/S0950-5849(16)30145-8/sbref0047
http://refhub.elsevier.com/S0950-5849(16)30145-8/sbref0047
http://refhub.elsevier.com/S0950-5849(16)30145-8/sbref0047
http://refhub.elsevier.com/S0950-5849(16)30145-8/sbref0047
http://refhub.elsevier.com/S0950-5849(16)30145-8/sbref0048
http://refhub.elsevier.com/S0950-5849(16)30145-8/sbref0048
http://refhub.elsevier.com/S0950-5849(16)30145-8/sbref0048
http://refhub.elsevier.com/S0950-5849(16)30145-8/sbref0048
http://refhub.elsevier.com/S0950-5849(16)30145-8/sbref0048

	Reducing scheduling sequences of message-passing parallel programs
	1 Introduction
	2 Related work
	2.1 Parallel programs testing
	2.2 Evaluation on the complexity of a program
	2.3 Communication models of parallel programs

	3 The proposed approach
	3.1 Determining scheduling sequences that affect the target statement
	3.2 Forming equivalent classes of scheduling sequences
	3.3 Selecting a scheduling sequence from each equivalent class

	4 Experiments
	4.1 Questions to answer
	4.2 The programs under test and the experimental environment
	4.3 Experimental results and analysis

	5 Conclusions
	 Acknowledgements
	 References

